3.825 \(\int (a+b \cos (c+d x))^{3/2} (B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\)

Optimal. Leaf size=295 \[ \frac{\left (4 a^2 C+7 a b B+8 b^2 C\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{\left (4 a^2 B+12 a b C+3 b^2 B\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{(4 a C+5 b B) \tan (c+d x) \sqrt{a+b \cos (c+d x)}}{4 d}-\frac{(4 a C+5 b B) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{a B \tan (c+d x) \sec (c+d x) \sqrt{a+b \cos (c+d x)}}{2 d} \]

[Out]

-((5*b*B + 4*a*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[(a + b*Cos[c + d*x
])/(a + b)]) + ((7*a*b*B + 4*a^2*C + 8*b^2*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/
(a + b)])/(4*d*Sqrt[a + b*Cos[c + d*x]]) + ((4*a^2*B + 3*b^2*B + 12*a*b*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*
EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[a + b*Cos[c + d*x]]) + ((5*b*B + 4*a*C)*Sqrt[a + b*Cos[c
+ d*x]]*Tan[c + d*x])/(4*d) + (a*B*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 1.18185, antiderivative size = 295, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 11, integrand size = 42, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.262, Rules used = {3029, 2989, 3055, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ \frac{\left (4 a^2 C+7 a b B+8 b^2 C\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{\left (4 a^2 B+12 a b C+3 b^2 B\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{(4 a C+5 b B) \tan (c+d x) \sqrt{a+b \cos (c+d x)}}{4 d}-\frac{(4 a C+5 b B) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{a B \tan (c+d x) \sec (c+d x) \sqrt{a+b \cos (c+d x)}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(3/2)*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

-((5*b*B + 4*a*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[(a + b*Cos[c + d*x
])/(a + b)]) + ((7*a*b*B + 4*a^2*C + 8*b^2*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/
(a + b)])/(4*d*Sqrt[a + b*Cos[c + d*x]]) + ((4*a^2*B + 3*b^2*B + 12*a*b*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*
EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[a + b*Cos[c + d*x]]) + ((5*b*B + 4*a*C)*Sqrt[a + b*Cos[c
+ d*x]]*Tan[c + d*x])/(4*d) + (a*B*Sqrt[a + b*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 3029

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 2989

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((b*c - a*d)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)
*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[
e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c - (
A*b + a*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) - a*(b*c - a*d)*(B*c - A*d)
*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2,
0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int (a+b \cos (c+d x))^{3/2} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx &=\int (a+b \cos (c+d x))^{3/2} (B+C \cos (c+d x)) \sec ^3(c+d x) \, dx\\ &=\frac{a B \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{2} \int \frac{\left (\frac{1}{2} a (5 b B+4 a C)+\left (a^2 B+2 b^2 B+4 a b C\right ) \cos (c+d x)+\frac{1}{2} b (a B+4 b C) \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{(5 b B+4 a C) \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a B \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{\int \frac{\left (\frac{1}{4} a \left (4 a^2 B+3 b^2 B+12 a b C\right )+\frac{1}{2} a b (a B+4 b C) \cos (c+d x)-\frac{1}{4} a b (5 b B+4 a C) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{2 a}\\ &=\frac{(5 b B+4 a C) \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a B \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}-\frac{\int \frac{\left (-\frac{1}{4} a b \left (4 a^2 B+3 b^2 B+12 a b C\right )-\frac{1}{4} a b \left (7 a b B+4 a^2 C+8 b^2 C\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{2 a b}+\frac{1}{8} (-5 b B-4 a C) \int \sqrt{a+b \cos (c+d x)} \, dx\\ &=\frac{(5 b B+4 a C) \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a B \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}-\frac{1}{8} \left (-4 a^2 B-3 b^2 B-12 a b C\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx-\frac{1}{8} \left (-7 a b B-4 a^2 C-8 b^2 C\right ) \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx+\frac{\left ((-5 b B-4 a C) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{8 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}\\ &=-\frac{(5 b B+4 a C) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{(5 b B+4 a C) \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a B \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}-\frac{\left (\left (-4 a^2 B-3 b^2 B-12 a b C\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt{a+b \cos (c+d x)}}-\frac{\left (\left (-7 a b B-4 a^2 C-8 b^2 C\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt{a+b \cos (c+d x)}}\\ &=-\frac{(5 b B+4 a C) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{\left (7 a b B+4 a^2 C+8 b^2 C\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{\left (4 a^2 B+3 b^2 B+12 a b C\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{(5 b B+4 a C) \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a B \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [C]  time = 4.86122, size = 422, normalized size = 1.43 \[ \frac{\frac{2 \left (8 a^2 B+20 a b C+b^2 B\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}+\frac{8 b (a B+4 b C) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}+4 \tan (c+d x) \sec (c+d x) \sqrt{a+b \cos (c+d x)} ((4 a C+5 b B) \cos (c+d x)+2 a B)-\frac{2 i (4 a C+5 b B) \csc (c+d x) \sqrt{-\frac{b (\cos (c+d x)-1)}{a+b}} \sqrt{\frac{b (\cos (c+d x)+1)}{b-a}} \left (b \left (b \Pi \left (\frac{a+b}{a};i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )-2 a F\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )}{a b \sqrt{-\frac{1}{a+b}}}}{16 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)*(B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

((8*b*(a*B + 4*b*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c
 + d*x]] + (2*(8*a^2*B + b^2*B + 20*a*b*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)
/(a + b)])/Sqrt[a + b*Cos[c + d*x]] - ((2*I)*(5*b*B + 4*a*C)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*
(1 + Cos[c + d*x]))/(-a + b)]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Co
s[c + d*x]]], (a + b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a
 + b)/(a - b)] + b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a -
 b)])))/(a*b*Sqrt[-(a + b)^(-1)]) + 4*Sqrt[a + b*Cos[c + d*x]]*(2*a*B + (5*b*B + 4*a*C)*Cos[c + d*x])*Sec[c +
d*x]*Tan[c + d*x])/(16*d)

________________________________________________________________________________________

Maple [B]  time = 1.904, size = 1403, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2*b-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*b^2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1
/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos
(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-2*b*(B*b+2*C*a)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-
b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(
-2*b/(a-b))^(1/2))+2*a*(2*B*b+C*a)*(-1/a*cos(1/2*d*x+1/2*c)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c
)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)+1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^
(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(
1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4
+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(
1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1
/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*
x+1/2*c),2,(-2*b/(a-b))^(1/2)))+2*a^2*B*(-1/2/a*cos(1/2*d*x+1/2*c)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*
x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^2+3/4*b/a^2*cos(1/2*d*x+1/2*c)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*s
in(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)-1/8*b/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2
*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1
/2*c),(-2*b/(a-b))^(1/2))+3/8/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*
b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-3/
8*b^2/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4
+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/
2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-3/8/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*cos(1/2*d*x+1/
2*c)^2*b+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x
+1/2*c),2,(-2*b/(a-b))^(1/2))*b^2))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )}{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sec \left (d x + c\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^4, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )}{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sec \left (d x + c\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)*(B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*(b*cos(d*x + c) + a)^(3/2)*sec(d*x + c)^4, x)